Oregon and Washington State Framework

Clearinghouse Hydrography Data Dictionary

Physical Data Model

Version 1.1

Prepared by the

Washington and Oregon Hydrography Framework Technical Work Groups

April 11, 2003

Table of Contents

Section 1 Database Overview	
Data Layer Descriptions	1
Database Listing and Naming Conventions	4
Database File Relationships	6
Database File Diagram – Water Bodies	8
Database File Diagram - Water Shoreline	9
Database File Diagram – Water Points	10
Section 2 Washington Hydrography Framework Data Descriptions	11
Watercourse Data Layer Description	11
Arc Attribute Table	11
Section Table	12
Route Attribute Table	13
Line Type Event Table	14
Name Event Table	15
Feature Type Event Table	
River Reach File Event Table	17
Stream Flow Event Table	
Feature History Event Table	20
Water Body Data Layer Description	23
Polygon Attribute Table	
Shoreline Data Layer Description	
Arc Attribute Table	25
Section Table	26
Route Table	
Shoreline Type Event Table	28
Feature History Event Table	
Water Point Layer Data Description	32
Point Attribute Table	32
Feature History Relate Table	34
Section 3 Appendix	36
Acknowledgements	36
Data Dictionary Code Tables	37
Data Dictionary Format Sheet Explanations	55
Format Sheet Explanation - Section Table	
Format Sheet Explanation - Route Table	
Format Sheet Explanation - Linear Event Table	59
Format Sheet Explanation - Point Relate Table	60

Section 1 Database Overview

Background and Document Contents

This data dictionary describes data for the Washington and Oregon Framework Hydrography data and the standard system used to identify the states surface water.

The Framework goal was to utilize an existing data model that would enable various participants to locate and identify the state's marine and fresh surface water. The system was developed to provide a standard for referencing surface water bodies and watercourses, and to provide a vehicle for cross-referencing existing surface water data between agencies and groups in both GIS and tabular formats.

It is intended that this physical data model provide the backbone whereby users may each attach and retain their own particular surface water data. The standard identifiers provided by this system will ideally facilitate data exchange on a wide scale amongst water management entities and reduce redundancy in data collection. For additional information about Dynamic Segmentation and/or the rules and procedures for applying this model, please refer to the companion document titled "Oregon and Washington State Framework Hydrography Concepts, Rules & Procedures."

Document Contents

<u>Section 1</u> is comprised of a description of the data layers, database listings and naming conventions.

<u>Section 2</u> describes the working physical data model, how system identifiers and indexing are carried, the database contents, the imbedded metadata, and an explanation of naming standards and coding structure.

<u>Section 3</u> contains an explanation of the format of the data dictionary sheets and the larger detailed code tables.

Data Layer Descriptions

The Framework model allows for the storage of all hydrographic features. Successful implementation of the Framework Hydrography data model requires that participants understand the way in which the different features are modeled and that they have a common understanding of the terms and definitions contained in the document. This section addresses the way in which these features are modeled.

Hydrographic features are modeled in four layers:

Water Points (WP)
Watercourses (WC)
Water Bodies (WB)
Water Body Shorelines (WS)

The desired source scale for all layer acquisition is 1:24,000 or better. 1:100,000 data may be substituted where layers at the desired source scale have not been developed. All data is stored in NAD83 geographic coordinates, double precision.

A longitude/latitude identifier (LLID) uniquely identifies each hydrographic feature in the model. This 13-character identifier is composed of the concatenated decimal degree longitude and latitude of the feature. The identifier is unique within each layer but there is no requirement that it be unique between the layers. The geographic location used to generate the LLID varies depending on the data layer. Consult the detailed layer attribute table definitions (Section 2) to determine the location used to generate the LLID for that layer.

Each feature in the Water Point (WP), Watercourse (WC) and Water Body (WB) layers share the following attributes:

- a unique LLID identifier.
- a generalized classification of the hydrographic feature type (e.g. spring, stream, lake etc.)
- a classification of the type of cartographic element. This is a more detailed classification of the feature useful for mapping or more detailed database queries.
- a classification of seasonal, or periodic behavior of the water feature (e.g. perennial, intermittent or ephemeral)
- a robust set of attributes that describe the history of spatial edits to each feature. See detailed layer attribute table definitions (Section 2) for a complete description of these feature history attributes.

What follows is a short description of each of the four layers present in the model, the type(s) of features included in each layer and the relationships between the related information.

<u>The Water Point (WP)</u> layer is the repository for springs, seeps and other hydrographic features with limited spatial extent (i.e. most easily represented by a point). This layer consists of a point coverage and a single related table. The related table describes the history of spatial edits to the feature.

<u>The Watercourse (WC)</u> layer consists of stream, canal, flume, pipeline and other linear hydrographic feature centerlines. Where these features (especially streams) are represented as double lined features at the source scale they will be represented in this layer by their centerline. Streams that flow through water bodies such as lakes and reservoirs will also be represented by a centerline. This feature has been modeled to allow for flow modeling. All arcs must point downstream. This layer will be routed using the LLID identifier for the stream. All associated attributes are stored as event tables on the LLID routes. The stream routes are indexed starting from 0 at the mouth of the stream to some maximum value at the headwaters. All route measures will be initially calibrated in kilometers to three decimal places. As these routes are edited, every effort will be made to keep the measure value at a given map location from shifting. This will be accomplished by stretching or shrinking the measure values to accommodate lengthening or shrinking along the route as its X,Y coordinates are edited. Thus, over time, the measures will only approximate kilometers along a watercourse or shoreline. These measures are simply an indexing scheme for linear referencing, not a stored attribute of shoreline or watercourse length.

<u>The Water Body (WB)</u> layer consists of sounds, bays, lakes, ponds, wetlands, reservoirs, inundation areas, the double lined portions of streams and other hydrographic features best represented as areas. For ease of managing these features they have been modeled as regions rather than simple polygons in the Framework model. However, by agreement, each water body will be stored as a non-overlapping, non-multi-part region (i.e. there will be one polygon per region). The advantages of this approach will be described in detail in document titled "Oregon and Washington State Framework Hydrography Concepts, Rules & Procedures." Water body attributes will be stored in the WB region attribute table (PATWB.) Changes to the water body shape will be made and tracked in the water body shoreline coverage.

The Water Body Shoreline (WS) layer consists of one or more representations of the shoreline of each water body. One representation of the shoreline for each water body will be flagged in the Framework database as the "default" shoreline. This default shoreline will be coincident with the water body perimeter in the water body (WB) layer. This layer is modeled in the Framework to accommodate those instances where multiple shorelines based on different datum (e.g. mean high water, mean low water etc.) are useful, especially marine shorelines. This layer is modeled as a routed linear feature. Water will be on the right side of each route and each shoreline will be represented by one or more non-overlapping routes. However, most simple water bodies (e.g. small lakes and ponds) will likely be represented by a single route. The history of spatial edits to each water body will be stored as an event on the route(s) on the default shoreline. Our agreement is that unless there is good justification to do so, all other shoreline attributes will be stored as events on the default shoreline. Non-default shorelines are intended to accommodate specialized requirements.

Database Listing and Naming Conventions

This section contains a list of the data files and diagrams depicting the relationships that exist between the files.

Database Layers and Coverages

Layer Description	Feature Class	Attribute Table Name
Water bodies areas	Region	WB.PATWB
Water body shorelines	Route	WS.RATWS
Watercourses	Route	WC.RATWC
Water points	Point	WP.PAT

Naming Conventions

Table Names:

COVERAGE NAME . TOPOLOGY TYPE DESCRIPTION

Examples: WC.EVT_NAME

WS.EVT_SL_TYPE WP.REL_FTR_HST

Lookup Table Names:

COVERAGE NAME . TOPOLOGY TYPE ITEM DESCRIPTION

Examples: WC.LUT_FTR_ORG_CD

Column Names or Items in Lookup Table

ITEM NAME FTR_ORG_CD ITEM NAME_LU FTR_ORG_LU (replace_CD with _LU for short description)

ITEM NAME_DS FTR_ORG_DS (replace CD with DS for long description)

Item or Field Names:

COVERAGE NAME . DESCRIPTION _ CLASS/KEY

Example: WC.LN_TYP_CD

Table and Attribute Requirements

All tables are mandatory and must be present in order to be placed in the Clearinghouse. In Section 2, you will find a description of each table and whether the attributes or fields contained within those tables should be applied to all the features on stream network or just on a portion of the features. We refer to this as the "Attributes Extent" and it's intended to help users identify the extent of coverage. In some cases attributes are available for only some stream/water body features, in those cases you are not required to populate the database if information is not available.

The data described below is provided in ARC/INFO format. All data is stored in NAD83 geographic coordinates, double precision.

Watercourses

Coverage/Table	File Name
Coverage	WC
Line attribute table	WC.AAT
Section table	WC.SECWC
Route attribute table	WC.RATWC
Event table	WC.EVT NAME
Event table	WC.EVT LN TYPE
Event table	WC.EVT FTR TYPE
Event table	WC.EVT RRF
Event table	WC.EVT STRM FLOW
Event table	WC.EVT_FTR_HST

Water Bodies

Coverage/Table	File Name
Coverage	WB
Region attribute table	WB.PATWB

Water Shorelines

Coverage/Table	File Name
Coverage	WS
Line attribute table	WS.AAT
Section table	WS.SECWS
Route attribute table	WS.RATHYD
Event table	WS.EVT_SL_TYPE
Event table	WS.EVT_FTR_HST

Water Points

Coverage/Table	File Name
Coverage	WP
Point attribute table	WP.PAT
Point relate table	WP.REL FTR HST

Please refer to Section 3 - Appendix for a full listing of associated code tables. There you will find the actual code tables as they're reflected in the four data coverage's (watercourses, water shorelines, water bodies and water points) with the similarities and differences between them noted.

Database File Relationships

The following diagrams depict the relationships between the data files comprising the three layers:

Figure 1-1 Watercourse

Figure 1-2 Water Body

Figure 1-3 Water Shoreline

Figure 1-4 Water Point

Figure 1-1 Database File Diagram - Watercourses

Figure 1-2 Database File Diagram – Water Bodies

Figure 1-3
Database File Diagram - Water Shoreline

Figure 1-4 Database File Diagram – Water Points

Section 2 Washington Hydrography Framework Data Descriptions

Watercourse Data Layer Description

This layer consists of stream, canal, flume, pipeline and other linear hydrographic feature centerlines. Where these features (especially streams) are represented as double lined features at the source scale they will be represented in this layer by their centerline. Streams that flow through water bodies such as lakes and reservoirs will also be represented by a centerline.

Line Layer: Watercourses

Layer Name: WC
Table Name: WC.AAT

Arc Attribute Table

Defined	Item	
<u>Item Name</u>	Definition	
FNODE#	4,5,B	
TNODE#	4,5,B	
LPOLY#	4,5,B	
RPOLY#	4,5,B	
LENGTH	8,18,F,5	
WC#	4,5,B	
WC-ID	4,5,B	

Data Classification - AAT

FNODE#

Arc from node internal number

TNODE#

Arc to node internal number

LPOLY#

Internal identifier of polygon to left of arc.

RPOLY#

Internal identifier of polygon to right of arc.

LENGTH

Arc length, units in decimal degrees.

WC#

Arc internal number, software assigned.

WC-ID

Arc identifier assigned by user. This item is not used nor is it changed. Presence required by the software.

Section Table: Watercourses Table	le Name:	WC.SECWC
-----------------------------------	----------	-----------------

Section Table

Defined	Item	
Item Name	Definition	
ROUTELINK#	4,5,B	
ARCLINK#	4,5,B	
F-MEAS	4,12,F,3	
T-MEAS	4,12,F,3	
F-POS	4,12,F,3	
T-POS	4,12,F,3	
WC#	4,5,B	
WC-ID	4,5,B	

Data Classification - SEC

ROUTELINK#

Route link number. Route internal number from RAT; identifies the route to which the section belongs.

ARCLINK#

Arc link number. Arc internal number from the AAT; identifies the arc to which the section belongs. It's provided to enable keyfile selections within ARCPLOT. Links with the item WC#.

F-MEAS

From measure. Measure of start position of section.

T-MEAS

To measure. Measure of end position of section.

F-POS

From position. Start position in terms of percentage of existing arc.

T-POS

To position. End position in terms of percentage of existing arc.

WC#

Internal sequence number of the sections.

WC-ID

User assigned section identifier set to equal the interval section identifier. This item is not used nor is it changed. Presence required by the software.

Route Table: Watercourses Route Table Name: WC.RATWC

Route Attribute Table

Defined	Item
Item Name	Definition
WC#	4,5,B
WC-ID	4,5,B
WC_LLID_NR	13,13,C

Data Classification - RAT

WC#

Route system internal sequence number

WC-ID

Route-system ID, user defined. This item is not used nor is it changed. Presence required by the software.

WC_LLID_NR

Watercourse longitude/latitude identifier number. The 13 character longitude/latitude derived unique watercourse route identifier (this is also known as LLID in the federal arena.) All watercourse segments are grouped into watercourse routes. The identifier is based on position of the downstream point (mouth) of the watercourse. The identifier code is composed by concatenating the decimal degree values (to four places of precision) of the coordinates (minus the decimal points). LLID numbers are not unique across the four coverages. There is no valid default value for this field and it must be populated.

Example: 1215613480987

Linear Event Table: Watercourses Table Name: WC.EVT_LN_TYPE

Event Table Outline

Defined	Item	
Item Name	Definition	Attribute Extent
WC_LLID_NR	13,13,C	
WC_BEGIN_AD	4,12,F,3	
WC_END_AD	4,12,F,3	
WC_LN_TYPE_CD	2,2,I	Fully populated
WC_FLOW_PATH_CD 2,2,I	Fully populated	

Data Classification - EVT

WC_LLID_NR

Watercourse longitude/latitude identifier number. The 13 character longitude/latitude derived unique watercourse route identifier (this is also known as LLID in the federal arena.) All watercourse segments are grouped into watercourse routes. The identifier is based on position of the downstream point (mouth) of the watercourse. The identifier code is composed by concatenating the decimal degree values (to four places of precision) of the coordinates (minus the decimal points). LLID numbers are not unique across the four coverages. There is no valid default value for this field and it must be populated.

Example: 1215613480987

WC BEGIN AD

Watercourse begin address. The beginning, or downstream, index of the watercourse segment. The address or index at which an event or attribute can be associated to a route.

Example: 000.000

WC END AD

Watercourse end address. The ending, or upstream, index of the watercourse segment. The address or index at which an event or attribute can be associated to a route.

Example: 036.025

WC_LN_TYPE_CD

Watercourse line type code. The type of watercourse feature that is represented in the database. Code used to differentiate the primary cartographic function of the lines regardless of the hydrographic feature or hydrologic function they represent

Example: 20

These codes can be found in the associated lookup table listed in Section 3 - Appendix.

WC_FLOW_PATH_CD

Watercourse flow path code. Defines the flow hierarchy of stream centerline that are within water body features. This code is used to define and segregate out the various flow pathways though water bodies. These centerlines usually have a WC_LN_TYPE_CD of 20 or 21. For single line watercourses code the event as "not applicable."

Example: Primary

Linear Event Table: Watercourses Table Name: WC.EVT_NAME

Event Table Outline

Defined	Item	
Item Name	Definition	Attribute Extent
WC_LLID_NR	13,13,C	
WC BEGIN AD	4,12,F,3	
WC END AD	4,12,F,3	
WC GNIS NM	50,50,C	Partially populated
WC_GNIS_NR	8,8,I	Partially populated

Data Classification - EVT

WC_LLID_NR

Watercourse longitude/latitude identifier number. The 13 character longitude/latitude derived unique watercourse route identifier (this is also known as LLID in the federal arena.) All watercourse segments are grouped into watercourse routes. The identifier is based on position of the downstream point (mouth) of the watercourse. The identifier code is composed by concatenating the decimal degree values (to four places of precision) of the coordinates (minus the decimal points). LLID numbers are not unique across the four coverages. There is no valid default value for this field and it must be populated.

Example: 1215613480987

WC BEGIN AD

Watercourse begin address. The index measure of the beginning, or downstream, extent of the event. The address or index at which an event or attribute can be associated to a route.

Example: 000.000

WC_END_AD

Watercourse end address. The index measure of the ending, or upstream, extent of the event. The address or index at which an event or attribute can be associated to a route.

Example: 036.025

WC GNIS NM

Watercourse GNIS name. The name of the feature as represented within the Geographic Names Information System (GNIS). The USGS is the mandated source of this information. Not all features contained within the coverage will have GNIS names.

Example: Deschutes River

WC GNIS NR

Watercourse GNIS (Geographic Names Information System) number. The unique identifier number assigned to each feature name represented within the GNIS database. This number is used to insert and/or update watercourse names stored in the framework hydrography database. Not all features contained within the coverage will have GNIS number.

Linear Event Table: Watercourses Table Name: WC.EVT_FTR_TYPE

Event Table Outline

Defined	Item	
Item Name	Definition	Attribute Extent
WC_LLID_NR	13,13,C	
WC BEGIN AD	4,12,F,3	
WC END AD	4,12,F,3	
WC_HYDR_FTR_CD	2,2,C	Fully populated
WC CART FTR CD	4,4,I	Fully populated

Data Classification - EVT

WC LLID NR

Watercourse longitude/latitude identifier number. The 13 character longitude/latitude derived unique watercourse route identifier (this is also known as LLID in the federal arena.) The identifier is based on position of the downstream point (mouth) of the watercourse. The identifier code is composed by concatenating the decimal degree values (to four places of precision) of the coordinates (minus the decimal points). LLID numbers are not unique across the four coverages. There is no valid default value for this field and it must be populated.

Example: 1215613480987

WC BEGIN AD

Watercourse begin address. The index measure of the beginning, or downstream, extent of the event. The address or index at which an event or attribute can be associated to a route.

Example: 000.000

WC_END_AD

Watercourse end address. The index measure of the ending, or upstream, extent of the event. The address or index at which an event or attribute can be associated to a route.

Example: 036.025

WC_HYDR_FTR_CD

Watercourse hydrographic feature code. The code used to describe the hydrographic feature type that the watercourse represents.

Example: ST

These codes can be found in the associated lookup table listed in Section 3 - Appendix.

WC_CART_FTR_CD

Watercourse cartographic feature code. The code used to describe the cartographic feature type that the watercourse represents. This represents feature codes developed initially by the USGS and used on the DLG's.

Example: 412

Linear Event Table: Watercourses Table Name: WC.EVT_RRF

Event **T**able Outline

Defined	Item	
Item Name	Definition	Attribute Extent
WC_LLID_NR	13,13,C	
WC BEGIN AD	4,12,F,3	
WC END AD	4,12,F,3	
WC_RRF_NR	17,17,C	Partially populated

Data Classification - EVT

WC LLID NR

Watercourse longitude/latitude identifier number. The 13 character longitude/latitude derived unique watercourse route identifier (this is also known as LLID in the federal arena.) All watercourse segments are grouped into watercourse routes. The identifier is based on position of the downstream point (mouth) of the watercourse. The identifier code is composed by concatenating the decimal degree values (to four places of precision) of the coordinates (minus the decimal points). LLID numbers are not unique across the four coverages. There is no valid default value for this field and it must be populated.

Example: 1215613480987

WC BEGIN AD

Watercourse begin address. The index measure of the beginning, or downstream, extent of the event. The address or index at which an event or attribute can be associated to a route.

Example: 000.000

WC END AD

Watercourse end address. The index measure of the ending, or upstream, extent of the event. The address or index at which an event or attribute can be associated to a route.

Example: 036.025

WC RRF NR

Watercourse River Reach File number. This represents the unique identifier used by the USEPA. A unique identifiers is carried on individual stream segments, running confluence to confluence. The identifier is comprised of 3 components – the watercourse hydrographic unit code number, the watercourse river reach file segment number, and the watercourse river_reach file mile number. The source of this data will be USGS National Hydrography Database (NHD) once Washington State 100K hydrography is incorporated into that database. Not all stream segments have been assigned a RRF number by the USGS. In some cases this information in not necessarly available.

Linear Event Table: Watercourses Table Name: WC.EVT STRM FLOW

Event Table Outline

Defined	Item	
<u>Item Name</u>	Definition	Attribute Extent
WC LLID NR	13,13,C	
WC_BEGIN_AD	4,12,F,3	
WC END AD	4,12,F,3	
WC_CONTU_CD	3,3,C	Fully populated
WC_PERIOD_CD	3,3,C	Fully populated

Data Classification - EVT

WC_LLID_NR

Watercourse longitude/latitude identifier number. The 13 character longitude/latitude derived unique watercourse route identifier (this is also known as LLID in the federal arena.) All watercourse segments are grouped into watercourse routes. The identifier is based on position of the downstream point (mouth) of the watercourse. The identifier code is composed by concatenating the decimal degree values (to four places of precision) of the coordinates (minus the decimal points). LLID numbers are not unique across the four coverages. There is no valid default value for this field and it must be populated.

Example: 1215613480987

WC BEGIN AD

Watercourse begin address. The index measure of the beginning, or downstream, extent of the event. The address or index at which an event or attribute can be associated to a route.

Example: 000.000

WC END AD

Watercourse end address. The index measure of the ending, or upstream, extent of the event. The address or index at which an event or attribute can be associated to a route.

Example: 036.025

WC_CONTU_CD

Watercourse continuity code. This is the classification of stream flow primarily in relation to its expression at the earth's surface. The most common condition is that a stream is continuous in space.

With respect to continuity, streams may be divided into continuous streams and interrupted steams. An interrupted stream is one that contains (a) perennial stretches with intervening intermittent or ephemeral stretches or (b) intermittent stretches with intervening ephemeral stretches. These two classes of interrupted streams are designated respectively, perennial interrupted streams and intermittent interrupted streams. A continuous stream is one that does not have interruptions in space.

Example of use with Periodicity Code:

You do not need to separate out each small segment of perennial, intermittent or ephemeral stream. If they sporadically exist along a "reach" the hydrologist chooses the dominant periodicity and calls the continuity interrupted. If the reach is not continuously perennial or intermittent we are noting it through the use of the interrupted attribute. It may be a scale issue but it also says a lot about the channel itself. These codes can be found in the associated lookup table in Section 3 - Appendix.

WC_PERIOD_CD

Watercourse periodicity code. This is a classification for watercourses in terms of the seasonal behavior of the feature over time or in terms of its surface flow.

Example: int

Linear Event Table: Watercourses Table Name: WC.EVT_FTR_HST

Event Table Outline

Dient Table Outline		
Defined	Item	
Item Name	Definition	Attribute Extent
WC_LLID_NR	13,13,C	
WC BEGIN AD	4,12,F,3	
WC END AD	4,12,F,3	
FTR MOD CD	3,3,C	Fully populated
FTR_INPUT_CD	2,2,I	Fully populated
FTR_INTRP_CD	2,2,I	Fully populated
FTR_SRC_CD	3,3,I	Fully populated
FTR SRC DT	8,8,D	Fully populated
FTR_SRCSCALE_NR	7,7,I	Fully populated
FTR_ACCUR_NR	4,12,F,3	Fully populated
FTR_ORG_CD	12,12,C	Fully populated
FTR_EDIT_DT	8,8,D	Fully populated

Data Classification - EVT

WC LLID NR

Watercourse longitude/latitude identifier number. The 13-character longitude/latitude derived unique watercourse route identifier (this is also known as LLID in the federal arena.) All watercourse segments are grouped into watercourse routes. The identifier is based on position of the downstream point (mouth) of the watercourse. The identifier code is composed by concatenating the decimal degree values (to four places of precision) of the coordinates (minus the decimal points). LLID numbers are not unique across the four coverages. There is no valid default value for this field and it must be populated.

Example: 1215613480987

WC_BEGIN_AD

Watercourse begin address. The index measure of the beginning, or downstream, extent of the event.

Example: 000.000

WC_END_AD

Watercourse end address. The index measure of the ending, or upstream, extent of the event.

Example: 036.025

FTR MOD CD

Feature modify code. Identifies the type of change that occurred to hydrography watercourse feature. Tracks the type of modification performed on the database. These codes can be found in the associated lookup table.

Example: add

FTR_INPUT_CD

Feature input code. The manner in which the hydrography watercourse data is entered or updated in the spatial database. These codes can be found in the associated lookup table.

Example: Scan

These codes can be found in the associated lookup table listed in Section 3 - Appendix.

FTR_INTRP_CD

Feature interpretation code. The methodology used to compose the hydrography watercourse information and how it was derived prior to data entry into the spatial coverage.

Example: 1

These codes can be found in the associated lookup table listed in Section 3 - Appendix.

FTR SRC CD

Feature source code. The compilation map or image source used when adding or updating hydrography watercourse data.

Example: 12

These codes can be found in the associated lookup table listed in Section 3 - Appendix.

FTR SRC DT

Feature source date. The compilation map or image source date used for the addition or update of hydrography watercourse data. A default date code should be used when no source date is available for historical information.

Example: 19990515 (CCYYMMDD = May 15, 1999) Default: 14520101 (CCYYMMDD = January 1, 1452

FTR SRCSCALE NR

Feature source scale number. Describes the scale denominator of the map or image source for the hydrography watercourse data additions or updates in the database. Exact scale can be input. The density of hydrography features displayed will vary by the base map scale. A default scale of "0" should be used when the source scale is unknown.

Example: 2400 Default: 0

FTR ACCUR NR

Feature accuracy number. Describes the positional accuracy of the hydrography watercourse data being added or updated in the database. Describes the correctness of the measurement. Use actual value e.g. .001; 3; 100. All units are entered in meters. A default code of "0.000" should be used when the accuracy is unknown.

Example: 24000 Default: 0.000

FTR_ORG_CD

Feature organization code. The organization that compiled, entered, updated or deleted the hydrography watercourse data. This list will grow as new organizations begin to add or update information and are certified by the clearinghouse. The Clearinghouse Manager will maintain the list of organizations authorized to participate in the editing of Hydrography Framework data.

Example: cothurwa

These codes can be found in the associated lookup table listed in Section 3 - Appendix.

FTR EDIT DT

Feature edit date. The date the feature was either entered, updated or deleted in the hydrography coverage. Represents the date when the data was incorporated into the database. This item is utilized to track changes in the database.

Example: 19980515 (CCYYMMDD = May 15, 1998)

Water Body Data Layer Description

This layer consists of sounds, bays, lakes, ponds, reservoirs, inundation areas, the double lined portions of streams and other hydrographic features best represented as areas.

Polygon Layer: Water Bodies Layer Name: WB

Table Name: WB.PATWB

Region Attribute Table Outline

Defined	Item	
<u>Item Name</u>	Definition	Attribute Extent
AREA	8,18,F,5	
PERIMTER	8,18,F,5	
WB#	4,5,B	
WB-ID	4,5,B	
WB LLID NR	13,13,C	
WB_HYDR_FTR_CD	2,2,C	Fully populated
WB_CART_FTR_CD	4,4,I	Fully populated
WB_GNIS_NM	50,50,C	Partially populated
WB_GNIS_NR	8,8,I	Partially populated
WB_PERIOD_CD	3,3,C	Fully populated

Data Classification - REGION

AREA

Water body area in decimal degrees.

PERIMETER

Water body perimeter length in decimal degrees.

WB#

Water body region internal number; software assigned.

WB-ID

Water body region user-defined ID. This item is not used nor is it changed. Presence required by the software.

WB_LLID_NR

Water body longitude/latitude identifier number. The 13-character longitude/latitude derived unique identifier of the water body. All water bodies and islands represented as polygonal features are assigned an identifier. The identifier is based on position of the polygon label point. The identifier code is composed by concatenating the decimal degree values (to four places of precision) of the coordinates (minus the decimal points). LLID numbers are not unique across the four coverages. There is no valid default value for this field and it must be populated.

Example: 1234567890987

WB HYDR FTR CD

Water body hydrographic feature code. The code used to describe the hydrographic feature type that the water body polygon represents.

Example: LA

These codes can be found in the associated lookup table listed in Section, pg. 51.

WB CART FTR CD

Water body cartographic feature code. The code used to describe the cartographic feature type that the water body polygon represents. This represents feature codes developed initially by the USGS and used on the DLG's.

Example: 101

These codes can be found in the associated lookup table listed in Section 3 - Appendix.

WB_GNIS_NM

Water body GNIS name. The name of the water body as contained within the Geographic Names Information System (GNIS) which is maintained by the USGS. Not all features contained within the coverage will have GNIS names.

Example: Ross Lake Default: blank or null

WB GNIS NR

Water body GNIS (Geographic Names Information System) number. The unique identifier number assigned to each feature name represented within the GNIS database. This number is used to insert and/or update water body names stored in the framework hydrography database. Not all features contained within the coverage will have GNIS number

Example: 12345678

Default: 0

WB_PERIOD_CD

Water body periodicity code. This is a classification of a water bodies in terms of the seasonal behavior of the feature over time or in terms of its surface flow.

Example: per

Shoreline Data Layer Description

This layer consists of one or more representations of the shoreline of each water body.

Line Layer: Water Shoreline

Layer Name: WS

Table Name: WS.AAT

Arc Attribute Table Outline

Defined	Item
Item Name	Definition
FNODE#	4,5,B
TNODE#	4,5,B
LPOLY#	4,5,B
RPOLY#	4,5,B
LENGTH	8,18,F,5
WS#	4,5,B
WS-ID	4,5,B

Data Classification - AAT

FNODE#

Arc from node internal number

TNODE#

Arc to node internal number

LPOLY#

Internal identifier of polygon to left of arc.

RPOLY#

Internal identifier of polygon to right of arc.

LENGTH

Arc length, units in decimal degrees.

WS#

Arc internal number, software assigned.

WS-ID

Arc identifier assigned by user. This item is not used nor is it changed. Presence required by the software.

Section Table Outline

Defined	Item	
Item Name	Definition	
ROUTELINK#	4,5,B	
ARCLINK#	4,5,B	
F-MEAS	4,12,F,3	
T-MEAS	4,12,F,3	
F-POS	4,12,F,3	
T-POS	4,12,F,3	
WS#	4,5,B	
WS-ID	4,5,B	

Data Classification - SEC

ROUTELINK#

Route link number. Route internal number from RAT; identifies the route to which the section belongs.

ARCLINK#

Arc link number. Arc internal number from the AAT; identifies the arc to which the section belongs. It's provided to enable keyfile selections within ARCPLOT. Links with the item WS#.

F-MEAS

From measure. Measure of start position of section.

T-MEAS

To measure. Measure of end position of section.

F-POS

From position. Start position in terms of percentage of existing arc.

T-POS

To position. End position in terms of percentage of existing arc.

WS#

Internal sequence number of the sections.

WS-ID

User assigned identifier set equal to the interval section identifier. This item is not used nor is it changed. Presence required by the software.

Route Table: Water Shoreline	Table Name: WS.RATWS
------------------------------	----------------------

Route Attribute Table Outline

Defined	Item	
Item Name	Definition	Attribute Extent
WS#	4,5,B	
WS-ID	4,5,B	
WS LLID NR	13,13,C	
WS DATUM CD 4,4,C	Fully populated	
WS_DFLT_SHORE_CD 1,1,C	Fully populated	

Data Classification - RAT

WS#

Route system internal sequence number

WS-ID

Route-system ID, user defined. This item is not used nor is it changed. Presence required by the software.

WS_LLID_NR

Water shoreline longitude/latitude identifier number. The 13-character longitude/latitude derived unique identifier of the shoreline. All water body shorelines and island shorelines are assigned an identifier. All shoreline segments are grouped into shoreline routes. The identifier is based on beginning of the route and is composed by concatenating the decimal degree values (to four places of precision) of the coordinates (minus the decimal points). LLID numbers are not unique across the four coverages. There is no valid default value for this field and it must be populated.

Example: 1234567890987

WS_DATUM_CD

Water shoreline datum code. The character code that describes the type and level that the water body shoreline was mapped at. The framework model is designed to store multiple shorelines; some of them are complete for a state's coastline while others are short segments. Shorelines consist of water body perimeters (lakes, ponds, and reservoirs) as well as linear segments like marine shorelines.

Example: mhw

These codes can be found in the associated lookup table listed in Section 3 - Appendix.

WS_DFLT_SHORE_CD

Water shoreline default shoreline code. The character code that designates the shoreline that's used to build water body area features. The default shoreline is comprised of the mean-high water line (mh) and the fresh water (fw) shoreline. This field is included to unambiguously designate the default shoreline regardless of the future changes or exceptions to the business rules.

Example: y

Linear Event Table: Water Shoreline Table Name: WS.EVT SL TYPE

Event Table Outline

Defined	Item	
Item Name	Definition	Attribute Extent
WS_LLID_NR	13,13,C	
WS_BEGIN_AD	4,12,F,3	
WS END AD	4,12,F,3	
WS_TYPE_CD	2,2,I	Fully populated

Data Classification - EVT

WS_LLID_NR

Water shoreline longitude/latitude identifier number. The 13-character longitude/latitude derived unique identifier of the shoreline. All water body shorelines and island shorelines are assigned an identifier. All shoreline segments are grouped into shoreline routes. The identifier is based on beginning of the route and is composed by concatenating the decimal degree values (to four places of precision) of the coordinates (minus the decimal points). LLID numbers are not unique across the four coverages.

There is no valid default value for this field and it must be populated.

Example: 1215613480987

WS BEGIN AD

Water shoreline begin address. The beginning, or downstream, index of the segment. The address or index at which an event can be associated to a route

Example: 020.035

WS_END_AD

Water shoreline end address. The ending, or upstream, index of the segment. The address or index at which an event can be associated to a route.

Example: 002.326

WS TYPE CD

Water shoreline type code. The type of water body shoreline feature that is represented.

Example: 1

Linear Event Table: Water Shoreline Table Name: WS.EVT_FTR_HST

Event Table Outline

Defined	Item	
Item Name	Definition	Attribute Extent
WS_LLID_NR	13,13,C	
WS_BEGIN_AD	4,12,F,3	
WS_END_AD	4,12,F,3	
FTR_MOD_CD	3,3,C	Fully populated
FTR_INPUT_CD	2,2,I	Fully populated
FTR_INTRP_CD	2,2,I	Fully populated
FTR_SRC_CD	3,3,I	Fully populated
FTR_SRC_DT	8,8,D	Fully populated
FTR_SRCSCALE_NR	7,7,I	Fully populated
FTR_ACCUR_NR	4,12,F,3	Fully populated
FTR_ORG_CD	12,12,C	Fully populated
FTR_EDIT_DT	8,8,D	Fully populated

Data Classification - EVT

WS LLID NR

Water shoreline longitude/latitude identifier number. The 13-character longitude/latitude derived unique identifier of the shoreline. All water body shorelines and island shorelines are assigned an identifier. All shoreline segments are grouped into shoreline routes. The identifier is based on beginning of the route and is composed by concatenating the decimal degree values (to four places of precision) of the coordinates (minus the decimal points). LLID numbers are not unique across the four coverages. There is no valid default value for this field and it must be populated.

Example: 1234567890987

WS BEGIN AD

Water shoreline begin address. The index measure of the beginning, or lowest address, of the event. The address or index at which an event or attribute can be associated to a route.

Example: 034.066

WS END AD

Water shoreline end address. The index measure of the ending, or highest address, of the event. The address or index at which an event or attribute can be associated to a route.

Example: 123.099

FTR MOD CD

Feature modify code. Identifies the type of change that occurred to hydrography water shoreline feature. Tracks the type of modification performed on the database.

Example: del

FTR INPUT CD

Feature input code. The manner in which the hydrography shoreline data is added or updated in the spatial database

Example: 1

These codes can be found in the associated lookup table listed in Section 3 - Appendix.

FTR INTRP CD

Feature interpretation code. The methodology used to compose the hydrography shoreline information and how it was derived prior to data entry into the spatial coverage.

Example: 6

These codes can be found in the associated lookup table listed in Section 3 - Appendix.

FTR_SRC_CD

Feature source code. The compilation map or image source used when adding or updating hydrography shoreline data.

Example: 8

These codes can be found in the associated lookup table listed in Section 3 - Appendix.

FTR SRC DT

Feature source date. The compilation map or image source date used for the addition or update of hydrography shoreline data. A default date code should be used when no source date is available for historical information.

Example: 19990515(CCYYMMDD = May 15,1999)
Default: 14520101 (CCYYMMDD = January 1, 1452)

FTR SRCSCALE NR

Feature source scale number. Describes the scale denominator of the map or image source for the hydrography shoreline data additions or updates in the database. Exact scale can be input. The density of hydrography features displayed will vary by the base map scale. A default scale of "0" should be used when the source scale is unknown.

Example: 24000 Default: 0

FTR_ACCUR_NR

Feature accuracy number. Describes the positional accuracy of the hydrography shoreline data being added or updated in the database. Describes the correctness of the measurement. Refer to USGS map accuracy standards for more information. Use actual value e.g. .001; 3; 100. All units are entered in meters. A default code of "0.000" should be used when the accuracy is unknown.

Example: 24000 Default: 0.000

FTR ORG CD

Feature organization code. The organization that compiled, entered, updated or deleted the hydrography shoreline data. This list will grow as new organizations begin to add or update information and are certified by the clearinghouse. The Clearinghouse Manager will maintain the list of organizations authorized to participate in the editing of Hydrography Framework data.

Example: ctyolywa

FTR_EDIT_DT

Feature edit date. The date the feature was either entered, updated or deleted in the hydrography coverage. Represents the date when the data was incorporated into the database. This item is utilized to track changes in the database.

Example: 19980515 (CCYYMMDD = May 15, 1998)

Water Point Layer Data Description

This layer is the repository for springs, seeps and other hydrographic features with limited spatial extent (i.e. most easily represented by a point.)

Point Layer: Water Points

Layer Name: WP
Table Name: WP.PAT

Point Attribute Table

Defined	Item	
Item Name	Definition	Attribute Extent
AREA	8,18,F,5	
PERIMETER	8,18,F,5	
WP#	4,5,B	
WP-ID	4,5,B	
WP_LLID_NR	13,13,C	
WP_HYDR_FTR_CD	2,2,C	Fully populated
WP_CART_FTR_CD	4,4,I	Fully populated
WP_PERIOD_CD	3,3,C	Fully populated

Data Classification - PAT

AREA

Water point area in decimal degrees.

PERIMETER

Water point perimeter length in decimal degrees.

WP#

Arc internal number, software assigned.

WP-ID

Water point identifier assigned by user. This item is not used nor is it changed. Presence required by the software.

WP LLID NR

Water point longitude/latitude identifier number. The 13-character longitude/latitude derived unique identifier of the water point. All water point features are assigned an identifier. The identifier is based on position of the point feature on the source material. The identifier code is composed by concatenating the decimal degree values (to four places of precision) of the coordinates (minus the decimal points). LLID numbers are not unique across the four coverages.

There is no valid default value for this field and it must be populated.

Example: 1215613480987

WP HYDR FTR CD

Water point hydrographic feature code. The code used to describe the hydrographic feature type that the water point represents.

Example: SP

WP_CART_FTR_CD

Water point cartographic feature code. The code used to describe the cartographic feature type that the water point represents. This represents feature codes developed initially by the USGS and used on the DLG's.

Example: 300

These codes can be found in the associated lookup table listed in Section 3 - Appendix.

WP_PERIOD_CD

Water point periodicity code. This is a classification of a water point in terms of the seasonal behavior of the feature over time or in terms of its surface expression.

Example: int

Point Relate Table: Water Points

Table Name: WP.REL FTR HST

Point Relate Table

Defined	Item	
<u>Item Name</u>	Definition	Attribute Extent
WP_LLID_NR	13,13,C	
FTR_MOD_CD	3,3,C	Fully populated
FTR_INPUT_CD	2,2,I	Fully populated
FTR_INTRP_CD	2,2,I	Fully populated
FTR_SRC_CD	3,3,I	Fully populated
FTR_SRC_DT	8,8,D	Fully populated
FTR_SRCSCALE_NR	7,7,I	Fully populated
FTR_ACCUR_NR	4,12,F,3	Fully populated
FTR_ORG_CD	12,12,C	Fully populated
FTR_EDIT_DT	8,8,D	Fully populated

Data Classification - REL

WP_LLID_NR

Water point longitude/latitude identifier number. The 13-character longitude/latitude derived unique identifier of the water point. All water point features are assigned an identifier. The identifier is based on position of the point feature on the source material. The identifier code is composed by concatenating the decimal degree values (to four places of precision) of the coordinates (minus the decimal points). LLID numbers are not unique across the four coverages. There is no valid default value for this field and it must be populated.

Example: 1215613480987

FTR MOD CD

Feature modify code. Identifies the type of changes that occurred to hydrography water point feature. Tracks the type of modification performed on the database.

Example: add

These codes can be found in the associated lookup table listed in Section 3 - Appendix.

FTR INPUT CD

Feature input code. The manner in which the hydrography water point data is entered or updated in the spatial database.

Example: 3

These codes can be found in the associated lookup table listed in Section 3 - Appendix.

FTR INTRP CD

Feature interpretation code. The methodology used to compose the hydrography water point information and how it was derived prior to data entry into the spatial coverage.

Example: 2

FTR_SRC_CD

Feature source code. The compilation map or image source used when adding or updating hydrography water point data.

Example: 5

These codes can be found in the associated lookup table listed in Section 3 - Appendix.

FTR SRC DT

Feature source date. The compilation map or image source date used for the addition or update of hydrography water point data. A default date code should be used when no source date is available for historical information.

Example: 19990515 (CCYYMMDD = May 15, 1999) Default: 14520101 (CCYYMMDD = January 1, 1452

FTR_SRCSCALE_NR

Feature source scale number. Describes the scale denominator of the map or image source for the hydrography water point data addition or update in the database. Exact scale can be input. The density of hydrography features displayed will vary by the base map scale. A default scale of "0" should be used when the source scale is unknown.

Example: 24000 Default: 0

FTR ACCUR NR

Feature accuracy number. Describes the positional accuracy of the hydrography water point data being added or updated in the database. Describes the correctness of the measurement. Use actual value e.g. .001; 3; 100. All units are entered in meters. A default code of "0.000" should be used when the accuracy is unknown.

Example: 24000 Default: 0.000

FTR ORG CD

Feature organization code. The organization that compiled, entered, updated or deleted the hydrography water point data. This list will grow as new organizations begin to add or update information and are certified by the clearinghouse. The Clearinghouse Manager will maintain the list of organizations authorized to participate in the editing of Hydrography Framework data.

Example: waecy

These codes can be found in the associated lookup table listed in Section 3 - Appendix.

FTR EDIT DT

Feature edit date. The date the feature was either entered, updated or deleted in the hydrography coverage. Represents the date when the data was incorporated into the database. This item is utilized to track changes in the database.

Example: 19980515 (CCYYMMDD = May 15, 1998)

Section 3 Appendix

Acknowledgements

A very special thanks to the authors and reviewers of this document. Many years have gone into the development of the data dictionary and physical data model.

The basic framework for this system was developed out of the efforts of the Washington Surface Water Identification Study Subcommittee of the Water Resources Data Management Task Force. Subcommittee members included representatives from tribes; environmental and agricultural groups; federal, state, and local government agencies; and other interested entities.

This work was embraced and further efforts were continued by the US Forest Service, WA Department of Fish and Wildlife, Pacific State Marine Fisheries Commission, WA Department of Ecology, WA Department of Natural Resources and the Oregon and Washington Hydrography Framework participants.

Authors:

Joy Denkers and Dan Saul - WA Department of Ecology

Contributors and Reviewers:

Deborah Naslund, Carl Harris, Ken Reister, Tim Young - WA Dept. of Natural Resources

Dick O'Connor, Martin Hudson - WA Dept. of Fish & Wildlife

Rick Jordan, Bill Wettengel, Ken Adee, Dale Guenther – US Forest Service

Bob Harmon – OR Water Resources Department

Dan Wickwire – US Bureau of Land Management

Mike Beaty – US Bureau of Reclamation

David Fox – US Army Corps of Engineers

Jack Horton – Environmental Systems Research Institute, Inc.

And Various Oregon & Washington Hydrography Framework Participants

```
Code Table Name: wc.lut wc ln type cd
WC LN TYPE CD
WC LN TYPE LU
                        = Artificial connector
                        = Watercourse line projected for connectivity purposes (stream short of the
WC LN TYPE DS
                           shoreline due to scale or subsurface flow)
WC LN TYPE_CD
                        = 10
WC LN TYPE LU
                        = Single
WC LN TYPE DS
                        = Single-line representing a watercourse segment
WC LN TYPE CD
                        = 20
WC LN TYPE LU
                        = Interior - in water body
WC LN TYPE DS
                        = Watercourse interior line represented within a water body (lake, reservoir)
WC LN TYPE CD
                        = 21
WC LN TYPE LU
                        = Interior - double banked stream
WC LN TYPE DS
                        = Watercourse interior line represented within a double banked watercourse
                           (Columbia River)
WC LN TYPE_CD
                        = 30
WC LN TYPE LU
                        = Watercourse/body perimeter
WC LN TYPE DS
                        = Watercourse segment and water body perimeter (stream & marsh bank
                          share the same line)
                        = 99
WC LN TYPE CD
WC LN TYPE LU
                        = Unknown/Unclassified
WC LN TYPE DS
                        = Unknown or Unclassified
Code Table Name: wc.lut wc flow path cd
WC FLOW PATH CD
                            = 1
                            = Primary
WC FLOW PATH LU
WC FLOW PATH DS
                            = Primary path of the watercourse centerline that flows through the
```

The linear path representing the flow of water from the

main inlet to the main outlet of a polygonal water body.

```
WC FLOW PATH CD
                             =2
WC FLOW PATH LU
                             = Secondary
WC FLOW PATH DS
                             = Secondary path of the watercourse centerline that flows through
                              the water body. The linear path that represent additional flow paths of
                              water, usually from secondary tributaries entering and connecting to
                              the primary path.
WC_FLOW_PATH_CD
                             = 3
WC FLOW PATH LU
                             = Not applicable
WC FLOW PATH DS
                             = Not applicable because the watercourse line doesn't flow through a
                               water body. Codes are not applied to single lines representing a
                               watercourse.
```

Code Table Name: wc.lut_wc_contu_cd

```
WC CONTU CD
                       = con
WC CONTU LU
                       = Continuous
                       = Continuous. A channel with no interruptions in space.
WC CONTU DS
WC CONTU CD
                       = int
WC CONTU LU
                       = Interrupted
WC CONTU DS
                       = Interrupted. A perennial flow with intervening intermittent or
                         ephemeral segments or intermittent flow with intervening ephemeral
                         segments
WC CONTU CD
                        = sub
WC CONTU LU
                       = Sub-surface
WC_CONTU_DS
                       = Sub-surface. Watercourse reach that represents a sub-surface flow.
WC CONTU CD
WC CONTU LU
                       = Unknown/Unclassified
WC CONTU DS
                       = Unknown or unclassified
```

Code Table Name: wc.lut wc period cd

```
WC PERIOD CD
                        = eph
WC PERIOD LU
                        = Ephemeral
WC PERIOD DS
                        = Ephemeral. Watercourse that exist only as a result of storm precipitation.
WC PERIOD CD
                        = int
WC PERIOD LU
                        = Intermittent or seasonal
WC PERIOD DS
                        = Intermittent or seasonal. Watercourse that is dry during certain times of the
                          year.
WC PERIOD CD
                        = per
WC PERIOD LU
                        = Perennial
WC PERIOD DS
                        = Perennial. Watercourse that essentially exist year round
```

4
WC_PERIOD_CD = unk
WC_PERIOD_LU = Unknown/Unclassified
WC_PERIOD_DS = Unknown or unclassified. Used when condition information is unknown or unclassified

Water Body

Code Table Name: wb.lut wb period cd WB PERIOD CD = dryWB PERIOD LU = Dry land WB_PERIOD DS = Dry land. Indicates an island. WB PERIOD CD = ephWB PERIOD LU = Ephemeral WB PERIOD DS = Ephemeral. Water bodies that exist only as a result of storm precipitation. WB PERIOD CD = int WB PERIOD LU = Intermittent or seasonal WB PERIOD DS = Intermittent or seasonal. Water bodies that are dry during certain times of the year. WB PERIOD CD = perWB PERIOD LU = Perennial WB PERIOD DS = Perennial. Water bodies that essentially exist year round. WB_PERIOD CD = unk WB PERIOD LU = Unknown/Unclassified = Unknown or Unclassified. Used when condition information is unknown or WB PERIOD DS unclassified.

Water Shoreline

Code Table Name: ws.lut_ws_datum_cd

```
WS DATUM CD
                     = ehw
WS DATUM LU
                     = Extreme high
WS DATUM DS
                     = Extreme high water
WS DATUM CD
                     = elw
WS DATUM LU
                     = Extreme low
                     = Extreme low water
WS DATUM DS
                     = fw
WS DATUM CD
WS DATUM LU
                     = Fresh water
WS DATUM DS
                     = Fresh water shoreline
```

```
4
WS DATUM CD
                      = mhhw
WS DATUM LU
                      = Mean higher high
                      = Mean higher high water
WS DATUM DS
WS DATUM_CD
                      = mhw
WS DATUM LU
                      = Mean high
                      = Mean high water
WS DATUM DS
WS DATUM CD
                      = mllw
WS DATUM LU
                      = Mean lower low
WS DATUM DS
                      = Mean lower low water
WS DATUM CD
                      = mlw
WS DATUM LU
                      = Mean low
WS DATUM DS
                      = Mean low water
WS DATUM CD
                      = na
WS DATUM LU
                      = Not a shoreline
WS DATUM DS
                      = Does not constitute a shoreline. No datum associated.
Code Table Name: ws.lut_ws_dflt_shore_cd
WS DFLT SHORE CD
                         = n
WS DFLT SHORE LU
                         = N_0
WS DFLT SHORE DS
                         = No, it is not the default shoreline
WS_DFLT_SHORE_CD
                         = y
WS DFLT SHORE LU
                         = Yes
WS_DFLT_SHORE_DS
                         = Yes, it is the default shoreline
Code Table Name: ws.lut ws type cd
WS TYPE_CD
                    = Marine mainland
WS TYPE LU
WS TYPE DS
                    = Marine mainland shoreline
WS TYPE_CD
                    = 2
                    = Marine island
WS TYPE LU
                    = Marine island shoreline
WS TYPE DS
                    = 3
WS TYPE CD
WS TYPE LU
                    = Freshwater
                    = Freshwater shoreline
WS TYPE DS
WS TYPE CD
                    = 4
                    = Freshwater island
WS TYPE LU
                    = Freshwater island shoreline
WS TYPE DS
```

```
WS TYPE CD
                      = 5
                      = Artificial
WS TYPE LU
WS TYPE DS
                     = Artificial line
WS TYPE CD
                      = 6
WS TYPE LU
                      = Estuarine
                     = Estuarine (bays) shoreline
WS TYPE DS
WS TYPE CD
                      = 99
WS TYPE LU
                      = Unknown/Unclassified
                     = Unknown or unclassified. Used when information is unknown or unclassified.
WS TYPE DS
```

Water Point

Code Table Name: wp.lut wp period cd

```
WP PERIOD CD
                        = eph
WP PERIOD LU
                        = Ephemeral
                        = Ephemeral. Water features that exist only as a result of storm precipitation.
WP PERIOD DS
WP PERIOD CD
                        = int
WP PERIOD LU
                        = Intermittent/seasonal
WP PERIOD DS
                        = Intermittent or seasonal. Water features that are dry during certain times of
                          the year.
WP PERIOD CD
                        = per
WP PERIOD LU
                        = Perennial
WP_PERIOD_DS
                        = Perennial. Water feature that essentially exist year round
4
WP PERIOD CD
WP PERIOD LU
                        = Unknown/Unclassified
WP PERIOD DS
                        = Unknown or unclassified. Used when condition information is unknown or
                         unclassified.
```

Multiple Coverage Code Tables

The following code tables are reflected in each of the water coverages described in this physical data model - points, bodies, shorelines, and courses. These represent the common codes between all layers (wc, wb, ws, wp) and are collectively referred to with the "wx" abbreviation.

The "x" in "wx" reflects the variable that is replaced depending on the code table that is used for the respective coverage.

```
Example: wx.lut_wx_hydr_ftr_cd wc.lut_wx_hydr_ftr_cd wb.lut_wx_hydr_ftr_cd ws.lut_wx_hydr_ftr_cd ws.lut_wx_hydr_ftr_cd wp.lut wx hydr ftr cd
```

```
Code Table Name: wx.lut wx hydr ftr cd
WX HYDR FTR CD
                       = DC
                       = Ditches/canals
WX HYDR FTR LU
                       = Ditches, canals, flumes
WX HYDR FTR DS
WX HYDR FTR CD
                       =ES
WX HYDR FTR LU
                       = Bays/estuaries
                       = Bays, estuaries, and oceans
WX HYDR FTR DS
WX HYDR FTR CD
                       = GL
WX HYDR FTR LU
                       = Glaciers/snowfields
WX HYDR FTR DS
                       = Glaciers or permanent snowfields
WX HYDR FTR CD
                       = IM
WX HYDR FTR LU
                       = Impoundments
WX_HYDR_FTR DS
                       = Impoundments
                       = IS
WX HYDR FTR CD
WX HYDR FTR LU
                       = Islands
WX HYDR FTR DS
                       = Islands
WX HYDR FTR CD
                       = IW
WX HYDR FTR LU
                       = Impounded wet areas
                       = Impounded wet areas
WX HYDR FTR DS
WX HYDR FTR CD
                       = LA
WX HYDR FTR LU
                       = Lakes/ponds
                       = Lakes and ponds
WX HYDR FTR DS
                       = PP
WX HYDR FTR CD
WX HYDR FTR LU
                       = Pipelines/water conveyance
                       = Pipelines and water conveyance structures
WX_HYDR_FTR_DS
```

```
WX HYDR FTR CD
                       =SC
                       = Side channels
WX_HYDR_FTR_LU
                       = Side channels to rivers or stream
WX_HYDR_FTR_DS
                       = SP
WX HYDR FTR CD
WX HYDR FTR LU
                       = Springs/seeps
                       = Springs and seeps
WX HYDR FTR DS
WX_HYDR_FTR_CD
                       = ST
                       = Streams/rivers
WX HYDR FTR LU
WX HYDR FTR DS
                       = Streams and rivers
WX HYDR FTR CD
                       =UN
WX HYDR FTR LU
                       = Unknown/Unclassified
WX_HYDR_FTR_DS
                       = Unknown or unclassified
13
WX HYDR FTR CD
                       =WT
WX_HYDR_FTR_LU
                       = Wet areas
WX HYDR FTR DS
                       = Wet areas
```

```
Code Table Name: wx.lut wx cart ftr cd
                       = 100
WX CART FTR CD
WX CART FTR LU
                       = Alkali flat
WX_CART_FTR_DS
                       = Alkali flat
WX CART FTR CD
                        = 101
WX CART FTR LU
                       = Reservoir
WX CART FTR DS
                       = Reservoir
WX CART FTR CD
                        = 103
WX CART FTR LU
                       = Glacier/snowfield
WX CART FTR DS
                       = Glacier or permanent snowfield
WX CART FTR CD
                        = 105
WX CART FTR LU
                       = Inundation
                       = Inundation
WX CART FTR DS
WX CART FTR CD
                        = 106
                       = Fish hatchery/farm
WX CART FTR LU
                       = Fish hatchery or farm
WX_CART_FTR_DS
                        = 107
WX CART FTR CD
                       = Industrial water impoundment
WX CART FTR LU
                       = Industrial water impoundment
WX CART FTR DS
                        = 109
WX CART FTR CD
                       = Sewage pond/filtration bed
WX CART FTR LU
WX_CART_FTR_DS
                       = Sewage disposal pond or filtration bed
WX CART FTR CD
                        = 110
                       = Tailings pond
WX CART FTR LU
WX CART FTR DS
                       = Tailings pond
WX CART FTR CD
                        = 111
WX CART FTR LU
                       = Marsh/wetland
                       = Marsh, wetland, swamp, bog
WX CART FTR DS
WX CART FTR CD
                        = 114
                       = Cranberry bog
WX CART FTR LU
WX CART FTR DS
                       = Cranberry bog
11
                        = 115
WX CART FTR CD
WX CART FTR LU
                       = Flats
                       = Flats (tidal, mud, sand, gravel)
WX_CART_FTR_DS
WX CART FTR CD
                        = 116
                       = Bay/estuary
WX CART FTR LU
WX_CART_FTR_DS
                       = Bay, estuary, gulf, ocean or sea
```

```
13
WX CART FTR CD
                       = 117
WX CART FTR LU
                       = Shoal
WX CART FTR DS
                       = Shoal
                       = 300
WX CART FTR CD
WX CART FTR LU
                       = Spring/seep
                       = Spring or seep
WX CART FTR DS
15
                       = 400
WX CART FTR CD
WX CART FTR LU
                       = Rapids
WX CART FTR DS
                       = Rapids
WX_CART_FTR_CD
                       = 401
                       = Falls
WX CART FTR LU
WX_CART_FTR_DS
                       = Falls
17
WX CART FTR CD
                       = 402
                       = Gravel pit/quarry with water
WX_CART_FTR_LU
                       = Gravel pit or quarry filled with water
WX CART FTR DS
18
                       = 406
WX CART FTR CD
WX CART FTR LU
                       = Dam/weir
                       = Dam or weir
WX_CART_FTR_DS
19
WX CART FTR_CD
                       = 407
                       = Canal lock/sluice
WX CART FTR LU
WX CART FTR DS
                       = Canal lock or sluice gate
                       = 408
WX CART FTR CD
WX CART FTR LU
                       = Spillway
WX_CART_FTR_DS
                       = Spillway
                       = 410
WX CART FTR CD
                       = Exposed rock
WX CART FTR LU
WX CART FTR DS
                       = Exposed rock
22
                       = 412
WX CART FTR CD
WX CART FTR LU
                       = Stream/river
                       = Stream or river
WX CART FTR DS
23
WX CART FTR CD
                       = 414
                       = Ditch/canal
WX CART FTR LU
WX_CART_FTR_DS
                       = Ditch or canal
24
                       = 415
WX CART FTR CD
WX CART FTR LU
                       = Aqueduct
                       = Aqueduct
WX CART FTR DS
```

```
25
WX CART FTR CD
                       = 417
                       = Penstock
WX CART FTR LU
WX CART FTR DS
                       = Penstock
WX CART FTR CD
                       = 418
WX CART FTR LU
                       = Siphon
                       = Siphon
WX CART FTR DS
                       = 419
WX CART FTR CD
WX CART FTR LU
                       = Channel in water
WX CART FTR DS
                       = Channel in water area
WX_CART_FTR_CD
                       = 420
                       = Wash/ephemeral
WX CART FTR LU
                       = Wash or ephemeral drain
WX_CART_FTR_DS
29
WX CART FTR CD
                       = 421
                       = Lake/pond
WX_CART_FTR_LU
WX CART FTR DS
                       = Lake or pond
30
                       = 422
WX CART FTR CD
WX CART FTR LU
                       = Reef
                       = Reef
WX_CART_FTR_DS
31
WX CART FTR CD
                       = 423
                       = Sand/gravel in open water
WX CART FTR LU
WX CART FTR DS
                       = Sand or gravel in open water
                       = 425
WX CART FTR CD
WX CART FTR LU
                       = Fish ladder
WX_CART_FTR_DS
                       = Fish ladder
                       = 466
WX CART FTR CD
                       = Pier/jetty
WX CART FTR LU
                       = Pier, jetty, breakwater, dock, wharf or causeway
WX CART FTR DS
34
                       = 901
WX CART FTR CD
WX CART FTR LU
                       = Impoundment
                       = Impoundment
WX CART FTR DS
35
                       = 902
WX CART FTR CD
                       = Island
WX CART FTR LU
WX_CART_FTR_DS
                       = Island
36
                       = 999
WX CART FTR CD
WX CART FTR LU
                       = Unknown/Unclassified
                       = Unknown or unclassified
WX_CART_FTR DS
```

```
Code Table Name: wx.lut ftr mod cd
FTR MOD CD
                      = add
FTR MOD LU
                      = Addition
FTR MOD DS
                      = Addition of spatial feature
FTR MOD CD
                      = del
FTR MOD LU
                      = Deletion
FTR MOD DS
                      = Deletion of existing spatial feature. Documents the historical ID which
                        maybe referenced in an orphaned event row that will have no matching spatial
                        record.
FTR MOD CD
                      = upd
FTR MOD LU
                      = Update
FTR MOD DS
                      = Update of existing spatial feature
Code Table Name: wx.lut ftr input cd
FTR INPUT CD
                      = 1
FTR INPUT LU
                      = Automatic
FTR INPUT DS
                      = Automatic via computer software
FTR INPUT CD
                      = 2
FTR INPUT LU
                      = Scan
FTR INPUT DS
                      = Scanning
FTR INPUT CD
                      = 3
FTR INPUT LU
                      = Table digitize
FTR INPUT DS
                      = Tablet digitizing
FTR INPUT CD
                      = 4
FTR INPUT LU
                      = Coordinate File
FTR INPUT DS
                      = Spatial coordinate file
FTR INPUT CD
FTR INPUT LU
                      = Line tracking
                      = Automatic line tracing
FTR INPUT DS
FTR INPUT CD
                      = 6
                      = Heads-up digitize
FTR INPUT LU
                      = Heads-up digitizing
FTR INPUT DS
                      = 99
FTR INPUT CD
FTR INPUT LU
                      = Unknown/unclassified
FTR INPUT DS
                      = Unspecified map feature input method
```

```
Code Table Name: wx.lut ftr intrp cd
FTR INTRP CD
                      = 1
FTR INTRP LU
                      = Photogrammetric
FTR INTRP DS
                     = Photogrammetric interpretation
FTR INTRP CD
                      = 2
FTR INTRP LU
                      = GPS
FTR INTRP DS
                     = Global Position System (GPS)
FTR INTRP CD
                      = Photointerp
FTR INTRP LU
FTR INTRP DS
                     = Photointerpretation
FTR INTRP CD
                      = 4
FTR INTRP LU
                      = Crenulation
                      = Interpretation of streams from contour crenulation
FTR INTRP DS
FTR INTRP CD
                      = 5
                      = Surface modeling
FTR INTRP LU
                      = Surface flow modeling
FTR INTRP DS
FTR INTRP_CD
                      = 6
FTR INTRP LU
                      = Transect
FTR INTRP DS
                      = Transect along a stream channel
FTR INTRP CD
                      = 7
FTR INTRP LU
                      = Existing work
FTR INTRP DS
                     = Existing line work
FTR INTRP CD
                      = 8
FTR INTRP LU
                      = Best guess
FTR INTRP DS
                     = Stream not directly observable so stream location is estimated
FTR INTRP CD
                      = 99
FTR INTRP LU
                      = Unknown/unclassified
FTR INTRP DS
                     = Unknown or unclassified
Code Table Name: wx.lut_ftr_src_cd
FTR SRC CD
FTR SRC LU
                     = USGS Map
FTR SRC DS
                     = USGS Topographic Map
FTR SRC CD
                     = 2
FTR SRC LU
                     = Orthophoto
FTR SRC DS
                     = Orthophotography
FTR SRC CD
                     = 3
FTR SRC LU
                     = Aerial photo
FTR SRC DS
                     = Aerial Photograph
```

```
4
FTR SRC CD
                    = 4
                    = MSS Imagery
FTR SRC LU
FTR SRC DS
                    = Multi-Spectral Satellite Imagery
FTR SRC CD
FTR SRC LU
                    = Field Survey
FTR SRC DS
                    = Field Survey of on the ground observation
FTR SRC CD
                    = 6
FTR SRC LU
                    = Plan Map
FTR SRC DS
                    = Planning Map
                    = 7
FTR SRC CD
FTR SRC LU
                    = Field Map
FTR_SRC_DS
                    = Field Map
FTR SRC CD
                    = 8
FTR_SRC_LU
                    = DEM
FTR SRC DS
                    = Digital Elevation Model (DEM)
                    = 9
FTR SRC CD
FTR SRC LU
                    = Radar Imagery
FTR SRC DS
                    = Radar Imagery
10
FTR_SRC_CD
                    = 10
FTR SRC LU
                    = Laser Imagery
FTR SRC DS
                    = Laser Imagery
FTR SRC CD
                    = 11
FTR_SRC_LU
                    = CFF
FTR SRC DS
                    = Cartographic Feature File (CFF)
                    = 12
FTR SRC CD
FTR SRC LU
                    = NWI Map
FTR SRC DS
                    = National Wetlands Inventory (NWI) Map
13
FTR SRC CD
FTR_SRC LU
                    = Imagery - Unspecified
FTR SRC DS
                    = Imagery – Unspecified Source
14
                    = 99
FTR SRC CD
FTR SRC LU
                    = Unknown/Unclassified
FTR SRC DS
                    = Unknown or unclassified
Code Table Name: wx.lut ftr org cd
FTR ORG CD
                     = bcmelp
FTR ORG LU
                     = BC Ministry of Environ
                     = British Columbia Ministry of Environment, Lands and Parks
FTR_ORG_DS
```

```
FTR ORG CD
                    = coclrkwa
FTR ORG LU
                    = Clark Co, WA
FTR ORG DS
                    = Clark County, WA
FTR ORG_CD
                    = cokingwa
                    = King Co, WA
FTR ORG LU
                    = King County, WA
FTR ORG DS
FTR ORG CD
                    = copierwa
                    = Pierce Co, WA
FTR ORG LU
FTR ORG DS
                    = Pierce County, WA
FTR ORG CD
                    = cosnohwa
FTR ORG LU
                    = Snoh. Co, WA
FTR_ORG_DS
                    = Snohomish County, WA
FTR ORG CD
                    = cospokwa
                    = Spokane Co, WA
FTR_ORG_LU
                    = Spokane County, WA
FTR ORG DS
FTR ORG CD
                    = cothurswa
FTR ORG LU
                    = Thurston Co,WA
                    = Thurston County, WA
FTR_ORG_DS
FTR ORG CD
                    = coyakwa
FTR ORG LU
                    = Yakima Co, WA
FTR ORG DS
                    = Yakima County, WA
                    = ctyseawa
FTR ORG CD
FTR ORG LU
                    = Seattle, WA
                    = City of Seattle, WA
FTR_ORG_DS
FTR ORG CD
                    = ctyolywa
                    = Olympia, WA
FTR ORG LU
                    = City of Olympia, WA
FTR ORG DS
11
FTR ORG CD
                    = ctyvanwa
FTR_ORG_LU
                    = Vancouver, WA
FTR ORG DS
                    = City of Vancouver, WA
12
FTR ORG CD
                    = iricc
FTR ORG LU
FTR ORG DS
                    = Intergovernmental Resource Information Coordinating Council
13
                    = lywfbr
FTR ORG CD
FTR ORG LU
                    = Longview Fiber
                    = Longview Fiber Company
FTR ORG DS
```

```
14
FTR ORG CD
                    = nmfs
FTR ORG LU
                    = NMFS
                    = National Marine Fisheries Service
FTR ORG DS
FTR ORG CD
                    = nrcs
FTR ORG LU
                    = NRCS
FTR ORG DS
                    = Natural Resources Conservation Service
FTR ORG CD
                    = nwifc
FTR ORG LU
                    = NWIFC
FTR ORG DS
                    = Northwest Indian Fisheries Commission
FTR ORG CD
                    = ordea
FTR ORG LU
                    = ODEO
FTR_ORG_DS
                    = OR Dept. of Environmental Quality
18
FTR ORG CD
                    = psrc
                    = PSRC
FTR_ORG_LU
FTR ORG DS
                    = Puget Sound Regional Council
19
FTR ORG CD
                    = raynr
FTR ORG LU
                    = Rayonier
FTR_ORG_DS
                    = ITT Rayonier
20
FTR ORG CD
                    = smpsn
                    = Simpson
FTR ORG LU
FTR ORG DS
                    = Simpson Timber Company
FTR ORG CD
                    = unknown
FTR ORG LU
                    = Unknown
                    = Unknown input organization
FTR ORG DS
FTR ORG CD
                    = usace
FTR ORG LU
                    = USACE
FTR ORG DS
                    = U.S. Army Corps of Engineers
23
FTR ORG CD
                    = usblm
FTR ORG LU
                    = USBLM
FTR ORG DS
                    = U.S. Bureau of Land Management
24
FTR ORG CD
                    = usbor
FTR ORG LU
                    = USBR
FTR ORG DS
                    = U.S. Bureau of Reclamation
25
FTR ORG CD
                    = usbpa
FTR ORG LU
                    = USBPA
                    = U.S. Bonneville Power Administration
FTR ORG DS
```

```
26
FTR ORG CD
                     = usepa
FTR ORG LU
                    = USEPA
FTR ORG DS
                    = U.S. Environmental Protection Agency
FTR ORG CD
                     = usepa-r10
FTR ORG LU
                     = USEPA-10
                    = U.S. Environmental Protection Agency - Region 10
FTR ORG DS
FTR ORG CD
                     = usfs
FTR ORG LU
                    = USFS
FTR ORG DS
                    = U.S. Forest Service
FTR ORG CD
                     = usfs-oly
FTR ORG LU
                    = USFS-Olympic
FTR_ORG_DS
                    = U.S. Forest Service - Olympic
30
FTR ORG CD
                     = usfws
                     = USFWS
FTR_ORG_LU
FTR ORG DS
                    = U.S. Fish and Wildlife Service
31
FTR ORG CD
                     = usgs
FTR ORG LU
                     = USGS
                    = U.S. Geological Survey
FTR ORG DS
32
FTR ORG CD
                     = usgs-nmd
FTR ORG LU
                    = USGS-NMD
FTR ORG DS
                    = U.S. Geological Survey - National Mapping Division
FTR ORG CD
                     = usnps
FTR ORG LU
                    = USNPS
FTR ORG DS
                    = U.S. National Park Service
FTR ORG CD
                     = wadfw
                     = WDFW
FTR ORG LU
FTR ORG DS
                    = Washington Department of Fish and Wildlife
35
FTR ORG CD
                     = wadnr
FTR_ORG LU
                    = WDNR
                    = Washington State Department of Natural Resources
FTR ORG DS
36
FTR ORG CD
                     = wadot
                    = WDOT
FTR ORG LU
FTR ORG DS
                    = Washington Department of Transportation
37
FTR ORG CD
                     = waecy
FTR ORG LU
                    = Ecology
                    = Washington Department of Ecology
FTR ORG DS
```

= weyhsr

38 FTR_ORG_CD FTR_ORG_LU = Weyerhaeuser

FTR_ORG_DS = Weyerhaeuser Company

Cross Reference Code Table Name: wx.xrf_hydr_cart Record WX_HYDR_FTR_CD WX_CART_FTR_CD

Data Dictionary Format Sheet Explanations

The formatting sheets provide the users with a road map with a description of how information is stored in the various data layers and coverages described in this data dictionary. Each coverage type is listed and its various components explained in detail.

Polygon Layer:1

Line . . .

Feature Attribute Table Outline

Begin	Defined	Item	
Column ⁴	Item Name ⁵	Definition ⁷	
13*	Cover-ID	4,5,B	
17	VARIABLE1	1,1,I	
* Redefined Items*8			

VARIABLE1

This is a description of Variable 1, including any coding scheme and permissible values (e.g., 1 = good, 2 = bad, 3 = ugly).

Notes:

Cover#

Cover-ID

¹The type of coverage, either polygon, line, or point; or type of table, either route, section, event, or reference.

³In a Polygon Attribute Table (PAT), there are four items automatically assigned. Only the last item, Cover-ID, is shown above. They are:

Area (units in square coverage units) 4,12,F

Perimeter (units in coverage units) 4,12,F

(polygon internal number; computer assigned) 4,5,B (user defined ID; if not assigned by user, will 4,5,B

usually default to Cover#)

²A descriptive variable (item) name.

*13 for PAT, 25 for AAT

In an Arc Attribute Table (AAT), there are seven items automatically assigned. Only the last item, Cover-ID, is shown above. They are:

Fnode#	(from node internal number)	4,5,B
Tnode#	(to node internal number)	4,5,B
Lpoly#	(left polygon; if only a line coverage, then set to zero)	4,5,B
Rpoly#	(right polygon)	4,5,B
Length	(units in coverage units)	4,12,B
Cover#	(arc internal number)	4,5,B
Cover-ID	(arc user ID)	4,5,B

⁴The variable begins in this column in the INFO record. An INFO record can be 4,096 columns (bytes) wide. This limit applies also to records so that the combined length of selected and related records cannot exceed 4.096.

- 1. Item name (see Note 5)
- 2. Item width the number of bytes to store the variable
- 3. Output width the number of columns to display the item value
- 4. Item type

The Item width and Output width may be different because decimal and binary representations of the same numeric value have different widths. If no output width is specified, the default width is the item width. There are 11 possible INFO item types:

Туре	Permissible Width	Uses	Stored As
1. B = Binary	2 or 4	Store large/small numbers economically	Binary
2. C = Character	4,096	Store alphanumeric data	ASCII
		(ARC imposes a 320 limit)	
3. D = Date	8	Store dates ASCII	
4. $F = Floating$	4 or 8	Store extremely large/small numbers	Binary
5. I = Integer	1 to 16	Codes ASCII	
6. N = Numeric	1 to 16	Store decimal numbers as characters	ASCII
7. L = Leading fill	1 to 16	Store leading zeroes in numbers such as	ASCII
-		Zip Codes (i.e., 01234)	
8. $V = Implied$	1 to 16	decimal point	
9. O = Overpunch	1 to 16	_	
10. T = Training sign	1 to 16		
11. P = Packed decimal	1 to 16		

The range for a 2-byte binary is **plus/minus** (use symbol) 32,767; for a 4-byte binary is **plus/minus** 2,147,483,648 (display for this would be 4,10,B).

Types L, V, O, T, and P are not supported by ARC. In general, the more that items are stored in binary format, the less storage space is required.

⁵The defined variable name. This is how INFO will read the item. The item name can be up to 16 characters long, no spaces, must begin with a letter, and is case sensitive.

⁶An alternative name can be assigned to the item. This is sometimes done to shorten the item name.

⁷The item definition consists of four elements:

⁸A redefined item is a new name, type, or width for previously defined items or subsets of items in the FAT. Commonly used to create unique relate items to access data in a lookup table.

Format Sheet Explanation - Section Table

Section Table: Table Name:

Section Table Outline

Begin	Defined	Item
Column	Item Name	Definition
1	ROUTELINK#	4,5,B
5	ARCLINK#	4,5,B
9	F-MEAS	4,12,F,3
13	T-MEAS	4,12,F,3
17	F-POS	4,12,F,3
21	T-POS	4,12,F,3
25	<subclass>#</subclass>	4,5,B
29	<subclass>-ID</subclass>	4,5,B

Data Classification - SEC

In a section attribute table (SEC), there are eight items automatically assigned. The items found in a SEC are:

Routelink#	(route internal # from RAT; identifies the route	4,5,B
	to which the section belongs)	
Arclink#	(arc internal # from the AAT; identifies the arc to	4,5,B
	which the section belongs)	
F-meas	(measure of start position of section)	4,12,F,3
T-meas	(measure end position of section)	4,12,F,3
F-pos	(start position in terms of percentage of existing arc)	4,12,F,3
T-pos	(end position in terms of percentage of existing arc)	4,12,F,3
<subclass>#</subclass>	(internal sequence number of the sections)	4,5,B
<subclass>-ID</subclass>	(section ID; if not assigned by user, will default to subclass #)	4,5,B

Format Sheet Explanation - Route Table

Route Table: Table Name:

Route **A**ttribute **T**able Outline

Begin	Defined	Item
Column	Item Name	Definition
1	<subclass>#</subclass>	4,5,B
5	<subclass>-ID</subclass>	4,5,B
9	<route item="" key=""></route>	User defined

Data Classification - RAT

In a Route Attribute Table (RAT), the <subclass># is software assigned. The <subclass>-ID is also software assigned, but can be re-assigned by the user. The route key item is user defined and assigned. The items in a RAT are defined as:

<subclass>>#</subclass>	(internal sequence number of the sections)	4,5,B
<subclass>>-ID</subclass>	(route-system ID; if not assigned by user,	4,5,B
	will default to subclass #)	
<route item="" key=""></route>	(relates RAT to event databases)	User defined

Format Sheet Explanation - Linear Event Table

Linear Event Table:Table Name:

Event Table Outline

Begin	Defined	Item	
Column	Item Name	Definition	
1	<event item="" key=""></event>	User defined	
7	FROM	4,12,F,3	
11	TO	4,12,F,3	

Data Classification - RAT

In a linear event table (EVT), there are three items always present. The event key item is user defined. They are:

(The event key items for WAHYD are defined as 13,13,C)

From (start measure in terms of index on existing route) 4,12,F,3
To (end measure in terms of index on existing route) 4,12,F,3

Format Sheet Explanation - Point Relate Table

Point Event Table: Table Name:

Event Table Outline

Begin	Defined	Item
Column	<u>Item Name</u>	<u>Definition</u>
1	<relate item="" key=""></relate>	User defined
7	Location	4,12,F,3

Data Classification - REL

In a point relate table (REL), there are at least two items always present. The relate key item is user defined. They are:

<relate key item> (relates table to PAT) User defined

(The relate key items for WAHYD points are defined as 13,13,C)